Twin-film chromatography of gibberellins

This communication describes how gibberellins A_1-A_9 and A_{13} can be separated on a single chromatogram on two adjacent thin films of silica gel and kieselguhr (twin-films). The method is based on the report by MACMILLAN AND SUTER¹ that the solvent system benzene-acetic acid-water (8:3:5 v/v) separates gibberellins A_1-A_3 and A_8 on kieselguhr and gibberellins A_4-A_7 and A_9 on silica gel. Thus if the gibberellins are applied to the kieselguhr of a kieselguhr-silica gel twin-film and a chromatogram developed such that the solvent migrates first through the kieselguhr and then the silica gel these nine gibberellins A_4-A_7 and A_9 migrate through the kieselguhr near or with the solvent front and are separated on the silica gel.

Experimental

To make twin-films the usual procedure for making thin-films is followed but a perspex partition is fitted with water-tight joints across the width of the spreader (Shandon Scientific Co.) dividing it into two compartments. One is filled with a slurry of Merck Silica Gel G and the other with a slurry of Merck Kieselguhr G (20 g silica gel or kieselguhr in 40 ml water for five 20 \times 20 cm films of 300 μ thickness). The bottom edge of the partition is milled to a point to ensure that when the slurries leave the spreader, they meet, forming two adjacent films with a sharp interface. The films are activated at 120° for 40 min.

The solvent system benzene-acetic acid-water (8:3:5 v/v) which forms two phases, is best mixed, separated into two phases, stored, and used in a constant temperature room or incubator $(15-30^{\circ})$. The twin-film with the gibberellins applied onto the kieselguhr is equilibrated (overnight at $15-25^{\circ}$, or for 6-8 h at 30°) with the vapour from the bottom phase. To do this, kieselguhr is scraped off the edge of the plate below the gibberellins and the plate stood in a small volume of the bottom phase in a sealed tank. The use of filter paper around the sides of the tank to aid saturating the atmosphere with vapour is inadvisable as it later causes unequal development of the chromatogram across the plate. After equilibration, the top phase is carefully added through a funnel and tube onto the bottom phase until it reaches the kieselguhr when it acts as migrating solvent. The plate is removed from the tank when the solvent has nearly reached the upper free edge of the silica gel, approx. 50 min after starting development.

The gibberellin spots can be located by spraying the dry plate with 5 % sulphuric acid in ethanol, when, after different periods of time at 120°, they fluoresce under U.V. light (360 m μ)¹. The time taken to maximum fluorescence, the colour of the fluorescence, the R_F value of each gibberellin and the section of the twin-film where each gibberellin is located are noted in Table I.

Discussion

On kieselguhr in the solvent benzene-acetic acid-water (8:3:5 v/v) gibberellins A_1 , A_2 , and A_3 partially overlap, but even so they can be differentiated from each other by their fluorescence colours and the times taken to fluoresce after treatment

J. Chromatog., 36 (1968) 388-389

TABLE I

TWIN-FILM CHROMATOGRAPHIC PROPERTIES OF GIBBERELLINS

Gibberellin	Solvent A R_F	Solvent B R _F	Section of twin-film	Fluorescence colour	Time taken to max. fluorescence (min)
A ₁	0.09	0.21	KG	blue	10 10 $2 \rightarrow 5$
A ₂	0.13	0.28	KG	purple	
A ₃	0.06	0.14	KG	blue–green → blue	
A ₄	0.89	0.93	SG	purple	5
A ₅	0.59	0.67	SG	blue	10
A ₆	0.47	0.56	SG	blue	10
A ₇	0.82	0.88	SG	yellow	2
A ₈	0.00	0.02	SG	blue	10
A ₉	1.00	1.00	SG	purple	5
A ₁₃	0.40	0.49	SG	purple	10

Solvent A = benzene-acetic acid-water (8:3:5 v/v;) solvent B = benzene-acetic acidpropionic acid-water (8:2:1:5 v/v); SG = silica gel; KG = kieselguhr.

with 5 % sulphuric acid. However by replacing one part of the acetic acid by propionic acid (see footnote to Table I) they can be completely separated from each other. In this system the less polar gibberellins run closer together nearer the solvent front but remain separate. The R_F values of gibberellins entering the silica gel film are dependent upon the distance the gibberellins travel through the kieselguhr relative to the length of the chromatogram. In obtaining the data in Table I the length of the chromatograms was 16 cm of which 5.5 cm were on kieselguhr. These are the recommended conditions for use with the solvent system containing propionic acid but for use with the other solvent system the length of the chromatogram on kieselguhr should be reduced to 4.5 cm. In addition to separating the first nine gibberellins and gibberellin A_{13} , gibberellins A_{10} and Lupinus I (gibberellin A_{18})² are also expected to be separated in these systems (by extrapolation from the report by CAVELL et al.³) but gibberellins A_{11} , A_{12} , and A_{15} are expected to migrate at the solvent front with gibberellin A_{9} .

The term "twin-film" has been coined because the author considers it more appropriate and in keeping with past nomenclature than the term "dual-band" introduced by ABBOTT AND THOMSON⁴.

Gibberellins A_1 , A_4 - A_9 and A_{13} were kindly supplied by I.C.I. Ltd. and gibberellin A₂ was kindly supplied by Dr. J. MACMILLAN. The work was supported by the Ministry of Agriculture.

School of Agriculture, University of Nottingham, Sutton Bonington, Loughborough (Great Britain)

A. MUSGRAVE

1 J. MACMILLAN AND P. J. SUTER, Nature, 197 (1963) 790. 2 J. MACMILLAN AND N. TAKAHASHI, Nature, 217 (1968) 170. 3 B. D. CAVELL, J. MACMILLAN, R. J. PRYCE AND A. C. SHEPPARD, Phytochemistry, 6 (1967) 867. 4 D. C. ABBOTT AND J. THOMSON, Chem. Ind. (London), (1965) 310.

Received April 29th, 1968

* Present address: AEC Plant Research Laboratory, Michigan State University, East Lansing, Mich. 48823 (U.S.A.).

J. Chromatog., 36 (1968) 388-389